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1. Introduction

The present trend of aircraft gas turbine design has been characterized by

significant increase in cycle pressure ratio and turbine inlet temperatures

required to provide higher thermal and propulsive efficiencies. Also,

increased interest in engine performance and fuel economy has created

additional emphasis for improving the efficiency of gas turbine engines. These

trends accentuate the need for improvements in sealing technology and the

development of advanced design and analysis capabilities to reduce gas path

seal leakage, maintain costly vent leakage to a minimum, provide better control

over sophisticated cooling circuits, and prevent high levels of seal leak~&ge

into critical aerodynamic locations in the turbine gas path which can result in

a considerable penalty from thermal and momentum losses. Advanced gas turbine

engine requirements include a broad engine power operating range, which usually

results in a wide range of seal clearance. In setting the design clearance,

consideration is given to transient differential growth, maneuver deflections,

mechanical and thermal growths, eccentricity, and manufacturing tolerances.

However, with variable geometry engines and multiple role applications, the

engine seals will not always operate at the design clearance nor provide

minimum leakage across the operating spectrum. Improved seal design and

analysis capabilities developed to address this problem would have a major

beneficial impact upon the design. The result of increased cycle pressure

ratio on typical labyrinth seal leakage with no change in seal design

technology is nearly linear, roughly doubling as the pressure ratio is

doubled. These increases are significant, particularly when the number of

seals in a gas turbine are considered. Gas turbines require a variety of

labyrinth seal designs. The seal configuration selected for a given

application is based on the purpose of the seal and satisfying design criteria

that includes the following considerations: axial envelope available, axial

travel, clearance range, potential wear, system sensitivity to seal

clearances, cooling flow requirements, sensitivity to damage in handling,

assembly requirements, and pressure ratio.

Labyrinth seals are used throughout a gas turbine engine, including:
compressors and turbine airfoil end seals, bearing compartment seals, and flow

system seals to prohibit or control flow. The purposes of these seals are not

always the same. Labyrinth seals used in the flow path are intended to
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minimize end leakage. Bearing compartment seals are intended to keep the oil

In the bearing compartment and to minimize the amount of leakage and heat

addition to the oil. Thrust balance labyrinth seals are located radially to

provide a desired off setting axial load component to reduce bearing loads to

the design level. Other flow system network seals have several functions

including: controlling leakage flows either to a minimum or to a level to

stisfy disc pumping and thus prevent hot gas recirculation in a cavity,

cntrolling cavity pressure to reduce axial bearing loads, or preventing

excessive leakage. Seal geometry variables include knife edge thickness and

sharpness, clearance, knife pitch, cavity depth and shape, number of knives,

s tep height, knife location on the step, and knife angle. Aerodynamic

parameters that ust be considered in seal design include rotational speed,

pressure ratio, temperature and Reynolds number.

Seal leakage Into the flow path has three loss elements: thermodynamic

(bypassing combustor); aerodynamic (re-entry to flow path will alter the

design velocity diagram for the compressor or turbine airfoils); parasitic

(rotational pumping power required to bring leakage up to disc or mainstream

velocity). Improper sealing can result in an inadequate supply of air to

cooled hardware, wehich way produce premature failures. Also, poor sealing

could result in high oil consumption and choking or possibly fires in the

bearing compartments. In addition, poor sealing will cause the engine to

rematch at lower than peak component efficiencies.

The benefits of improved sealing are wisely recognized and show the

significant improvements of reduced seal leakage on advanced engines, of order

2% SFC reduction for a 4% reduction in leakage.

The results of improving labyrinth seal technology and reducing leakage

may also be expressed in terms of cost trade-of fs with other gas turbine

components. These trade-of fs have shown that sealing improvements to achieve :
the same level of compressor or turbine component efficiency change are more

economical. In addition, there is a significant amount of improvement

available for sealing efficiency, whereas the state-of-the-art compressor and

turbine component efficiencies have relatively less room for improvement.

If a labyrinth seal design is to be successful for the application

intended, an accurate seal design and analysis model is necessary. The design

and analysis capabilities available today rely heavily on empirical
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relationships, which severely limits the application range. Recently, advanced

numerical techniques based upon solution of the governing flow equations, the

Navier-Stokes equations, have been used for the labyrinth seal analysis [1,21.

These studies have been limited to cases with two coordinate directions, i.e.,

cases which assume two-dimensional planar symmetry or axial symmetry. For

several of the axisymmeIIItric cases the effect of rotation vas considered by the

imposition of a rotating boundary and the additional solution of the swirl

momentum equation. These efforts have clearly shown the ability of the Navier-

Stokes approach to simulate the very complex seal flow field for a variety of

practical flow configurations. A very important current problem concerns the

damping performance of seals in which the gap height at any azimuthal statiion

varies with time. This can be a result of eccentricity, system vibrations,

etc., and represents a very challenging problem. The resulting time varying

shaft loading can have a major role in damping the vibration, and thereby

changing the shaft critical speed. The focus of the present effort would be to

simulate these time-dependent flow fields due to a non-constant gap height via

a solution of the time-dependent Navier-Stokes equations.

2. Phase I - Technical Objective

The overall objective of the present effort was to develop a Navier-

Stokes analysis which would be applied to two-dimensional, time-dependent

labyrinth configurations. While it is realized that the eccentricity or forced

vibration problems are inherently three-dimensional in nature, it was felt

that the potential of the Navier-Stokes approach could be assessed through

consideration of a two-dimensional seal geometry in which the gap heights vary

in a prescribed manner with time. An existing code with time invariant

geometry was extended to apply to this problem and calculations were run to

assess the procedure. The flow fields were interrogated to determine if the

approach gives the qualitatively expected effect of gap time-dependence. This

approach was taken because of the limited time and resources available under

the Phase I effort. Under the Phase II effort, the full three-dimensional time

dependent approach would be used to simulate the eccentricity and forced

vibration problems. Details of this effort follow.
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3. Mathematical Analysis

The flow field within a labyrinth seal is governed by the Navier-Stokes

equations, and in conjunction with a suitable turbulence model a solution of

the time-dependent form of these equations would serve to predict the flow

field for both laminar and turbulent flows. As the present code is configured,

the mixing length adoel assumes that the flow is fully turbulent, i.e., there

is no transition from laminar to turbulent flow. The two-equation model,

however, does have an inherent transition model within the governing equations

and hence, automatically considers the physics of transition. The form of the

Navier-Stokes equations expressed in the more common coordinate systems cn be

found in standard fluid dynamic texts [31, and the equations themselves have

been derived in general tensor form by Walkden (41 for viscous flow.

The form considered in this investigation is based upon density, p, and

the radial and axial velocities, u and w, as dependent variables and continuity

and the momentum equations written in the cylindrical polar coordinates as

governing equations. In this approach the continuity and momentum equations

are solved in the form

3 3
I(_ a (Jy- $ ) - i)

3T a-i ayj

+ a (JYi ) + C a (JYi )) (1)

ay ' ayj

+

where

YJ -= yj
at

YJ = ay j  (2)

axi

and J is the Jacobian of the inverse transformation
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yl y2 y3

Dy I y 2 y3

;)(X, 9x2 , x 3 )  ax 2  ax 2  ax2  (31J = _ _ _ _ (3)
- 1 2 3 1T2
a(y, y 3) 3y ay2 by3

ax 3  ax3  bx3
y I y2 33

ay I by 2 by3

Further, the coefficients B, yi, Cj are given by

B 1, 02 = 1, B3=1
r r

YT =  , Y 2 = 1, Y3 - 1 (4)
r

; = 1, 2 -_1 , C 3"
m rr

and m - I for all equations except the x2 - direction momentum equation, for

which m - 2. The vector variables used in Eq. I are defined as

pU1  pU I U

PU2  nr PU2 Ut1 (5)

pU 3  pU 3U i

P pUi

where n I for i I and n -0 for i - 2, 3.
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pa1. rr

- s 15 2 r1  2 T 2 , 2 f or L -2, 3

PS 03  rr13  T1

0 L0 JL0 J(6)

Note that the velocity components (Ul, U2 , U3 ) are the cylindrical-polar

velocity components, and -rjis the stress tensor written in cylindrical-polar

coordinates. The molecular and turbulent stress tensors may be written t

Tjij - 2U eff Dj(7

- au1

axi

5 2-1 au2+ U1
r -; r

533 - U(8

D1 (U all 1
2 rr

[au 3 u 1
13 - [ax~ ax 3j

D 1 1au 3  au %
23 r - j[ x 3 2  ax 3
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au au(9
V -U-1 3 (rU1) + 1 +2 3 (9)

r - r 3

axax2 ax3

The derivatives required in Eqs. (8) - (9) must be expressed in terms of the

computational coordinates yJ using the chain rule.

Finally, the vector t contains the additional curvature terms due to

the cylindrical-polar coordinate system.

2-
!0U 2 - T22
r r

(10)

-1PU 1U2
r

0

Since the present effort involves the problem of turbulent flow, a

turbulence model suitable for this problem is necessary. Using Favre averag-

ing [51, the governing equations are then identical to the laminar equations

with velocity and density being taken as mean velocity and viscosity as the

sum of the molecular and turbulent viscosity. Several models of varying

sophistication are available for the turbulent viscosity. The code being

used for the present effort contains both a mixing length turbulence model

and a two-equation turbulence model. This latter approach is based upon

solution of the turbulence energy and dissipation equations in conjunction

with the mean flow equations. In the present effort, transition from laminar

to turbulent flow occurs far upstream of the first blade and, in fact, the

domain where the computation is performed is fully within the turbulent

region. Although eventually a two-equation model may be required for this

problem, previous experience (Refs. 1 and 2) has shown that many of the

essential features of the seal flow field can be captured with a numerical

simulation using a mixing length approach. Therefore, since in this effort

transition was not of importance and due to the fact that the use of a

two-equation model would increase run time by approximately 50%, a mixing

length model was used. The mixing length, Lm, was computed from [6).

-7-
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A3 " O.09Atanh ( Ky )D
0.09A

where K is the van Karman constant, y is the distance normal to the wall, A is

the boundary layer thickness and D is a sublayer damping factor which is

determined from the analysis of Van Driest [7]. The turbulent viscosity, UT"

then was obtained by

T  -

where D:D is the second invariant of the mean flow rate of deformation tqnsor.

With the mixing length model used, the mixing length will be zero on the wall

and will monotonically increase (not linear) through the boundary layer

becoming a maximum of 0.09A at the edge of the boundary layer and remaining

constant thereafter. D:D is a maximum on the wall and will become zero at the

edge of a boundary layer. Thus, the combined effort is to produce a turbulent

viscosity of zero on the wall, increasing to a maximum with the boundary layer

and becoming zero at the edge of the boundary layer.

4. Numerical Analysis

The numerical procedure used to solved the governing equations is a

consistently split linearized block implicit scheme originally developed by

Briley and McDonald [81 and embodied in a computer code termed MINT, an

acronym for Multidimensional Implicit Nonlinear Time-Dependent. The basic

algorithm has been further developed and applied to both laminar and turbulent

flows. Since the scheme has been described in detail in several publications

available in the open literature, it will not be detailed here. Rather, only a

brief outline of the procedure will be given in the following.

The governing equations are replaced by an implicit time difference

approximation, optionally a backward difference or Crank-Nicolson scheme.

Terms involving nonlinearities at the implicit time level are linearized by

Taylor series expansion about the solution at the known time level, and

spatial difference approximations are introduced. The result is a system of

multidimensional, coupled (but linear) difference equations for the dependent

variables at the unknown or implicit time level. To solve these difference

-8-
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equations, the Douglas-Gunn procedure for generating alternating-di rect ion

implicit (ADI) splitting schemes as perturbations of fundamental Implicit

difference schemes is introduced in its natural extension to systems of partial

differential equations. This ADI splitting technique leads to systems of

coupled linear difference equations having narrow block-banded matrix

structures which can be solved efficiently by standard block-elimination

methods.

The method centers around the use of a formal linearization technique

adapted for the integration of initial-value problems. The linearization

technique, which requires an implicit solution procedure, permits the solution

of coupled nonlinear equations in one space dimension (to the requisite degree

of accuracy) by a one-step noniterative scheme. Since no iteration is required

to compute the solution for a single time step, and since only moderate effort

is required for solution of the implicit difference equations, the method is

computationally efficient; this efficiency is retained for multidimensional

problems by using ADI matrix splitting techniques. The method is also

economical in terms of computer storage, in its present form requiring only

two time levels of storage for each dependent variable. Furthermore, the

splitting technique reduces multidimensional problems to sequences of

calculations which are one-dimensional in the sense that easily-solved narrow

block-banded matrices associated with one-dimensional rows of grid points are

produced. Consequently, only these one-dimensional problems required rapid

access storage at any given stage of the solution procedure, and the remaining

flow variables can be saved on auxiliary storage devices if desired. Since

each one-dimensional split of the matrix produces a consistent approximation

to the original system of partial differential equations, the scheme is termed

a consistently split linearized block implicit scheme. Consistent splitting

has been shown by a number of authors [91 to considerably simplify the

application of the intermediate split boundary conditions.

The present Phase I effort applied the LBI scheme to a time-dependent body

fitted coordinate system simulating flow through a seal with a time varying gap

height. At every time step, a boundary fitted coordinate system was

constructed to accommodate the time dependent characteristic of the boundary

(rotor). A simple Eulerian height function was used to represent the rotor

surface. Various techniques to describe a moving surface can be found in Chan

and Banerjee (101. This function is defined as the distance from a reference

line and is prescribed by a sinusoidal function in time.I

-9-
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For numerical calculations, the height function is discretized into

points, sometimes called markers. These markers are then used to define the

time dependent boundaries. Since a boundary fitted coordinate system is used,

the boundary is part of the grid system at all times. For this reason, flow

variables at the moving boundary are well defined and application of the

boundary conditions at these boundaries is straightforward.

The numerical procedure can be summarized in four steps: 1) the governing

equations of the fluid and their corresponding boundary conditions are

transformed into a boundary fitted coordinate system according to the shapes

of the surface; 2) the governing equations are solved in the transformed

coordinates using the LBI scheme; 3) locations of the surface are advanceld

using the prescribed motion of the rotor; and 4) advance time step and repeat

the sequence.

5. Results

The work performed in the present Phase I program can be identified by

three tasks

I. Confirmation of the numerical capabilities of the existing MINT code to

handle time-dependent sample 10-20X scale labyrinth seal geometries.

II. Numerical calculations using realistic flow conditions.

III. Assessment of the Navier-Stokes approach ,to the three-dimensional, time

dependent labyrinth seal problem.

These three tasks are now discussed in detail.

Task 1:

As the first task in the Phase I effort, the existing vectorized coding

was verified for cylindrical-polar and time-dependent coordinates. These are U

the main features of the vectorized code which have not yet been verified but

are required for the seal calculations performed here. The code has been

written as a general geometry code in which the computational coordinates are a

function of the Cartesian or polar coordinates and time. Verification

consisted of two parts. In the first part, the cylindrical polar coordinates

option was validated through a test case which has an analytical solution for

-10-



the fully developed laminar pipe flow. The fluid flow inside a pipe was used

to test the cylindrical polar coordinates option of the code. For this case,

the Hagen-Poissuille parabolic velocity distribution was obtained. The

calculations agreed to within less than 0.1% with the analytical solution of

the Navier-Stokes equations. To assess that the time dependent coordinate

option was working properly, a series of detailed printouts including

intermediate results, was made. These intermediate printouts shoved the code

to be correctly evaluating the convective-like terms which are produced by the

time movement of the coordinate system.

Task II: L-

In the second task, three demonstration calculations were made. In these

cases a geometry of straight tapered seal with three knives was used. The

first calculation obtained a converged solution with time-independent seal

boundary. The purpose of this case was to exercise task I on the seal geometry

and also serve as initial conditions for cases 2 and 3. Cases 2 and 3 involved

calculations of flow field inside the straight tapered seal geometry with a

prescribed time dependent boundary (Figure 1). The rotor was chosen to be the

time-dependent surface and the motion of it is sinusoidal with time. In these

two cases, the moving surface had an oscillatory frequency of one. The

amplitude of oscillation of the moving surface in cases 2 and 3 was 0.1 and

0.2, respectively. These amplitudes correspond to a changes of 20% and 40% of

the entire gap height.#

Since the overall objective of the Phase I effort was to demonstrate the

ability of the Navier-Stokes solver to calculate the flow within the seals of

an eccentric whirling rotor, a representative seal geometry with which the

authors were well acquainted was chosen. For all three cases, fluid flow

* calculations have been performed in a straight tapered seal configuration with

three knives (Figure 1). The clearance of each seal is chosen as a

characteristic length, 6, of 0.1 inches (0.245 cm). All other dimensions on

Figure 1 are referred as multiples of this length. The stator had a radius of

5.2 inches (13.2 cm). For the cases run under this effort, the governing

equations consisted of the transformed streamwise and transverse polar momentum

equations and the continuity equation. The initial conditions and boundary

conditions can be summarized as the following. The flow is initially assumedI
to be stagnant and the back pressure lowered to the desired level. The



boundary conditions use the no-slip conditions on the walls, the two-layer

model at the Inlet, and specified static pressure in the exit boundary. The

two layer model divides the upstream inlet boundary into two regions (1) a

central core in which the total pressure is specified and (2) a boundary layer

region in which the pressure is assumed constant and the form, but not the

magnitude, of the boundary layer velocity profile is assumed. The assumed

profile is normally determined by specifying a distance from a leading edge and

a boundary layer growth rate. Thus a boundary layer thickness is determined at

the computational inlet plane and a boundary layer velocity profile is either

user specified or determined by a variety of analytical or semi-analytical

techniques (e.g., (11-121). In this study, the method of Maise and McDohld

(Ill was used. In essence, the boundary layer thickness and the form of the

velocity profile represent the upstream history of the flow before entering the

region of computation. The edge velocity was determined from the specified

inlet total pressure and the static pressure determined via the time-evolving

solution. For the cases considered, the pressure ratio was 2.0. The inlet

boundary layer profiles on the rotor and land entrance were assumed to have a

thickness of 0.05 inches (0.0122 cm) and a skin friction coefficient of 0.005.

The turbulence viscosity was assumed to be modeled by a mixing length model

previously discussed. Once a steady state was acl'ieved, the rotor is allowed

to move in the radial direction.

Figure 2 and 4 show the velocity vector plots and pressure contours inside

the blade gaps for case 1. Figure 3 shows the axial velocity profile along the

first coordinate line in the first blade gap. In this case, the flow remained

subsonic except in a small axial region (656 to 676) near the third knife

blade, where 6 refers to the gap shown in Fig. 1. The maximum Mach number was

1.03 at an axial location, 656, in the third blade gap. This was approximately

where the dimensionless pressure is 0.48. A large recirculation exists
downstream of the last blade and recirculating zones exist in the two cavity :
regions, as was expected. A small recirculating vortex was found at the first

blade surface. Along all blade surfaces, low pressure points were found at the

leading edge of each blade. In the third blade surface, a low pressure point

was also observed at the trailing edge. At the exit area of the first, second

and third blade, the pressures are 0.64, 0.60 and 0.48 of the inlet pressure,

respectively.

-12-
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In cases 2 and 3, the radial motion of the rotor was assumed to have an

oscillatory frequency (in time) of unity. To study the effects due to this

moving boundary, pressure and axial velocity near the middle of the third

knife blade surface were traced in time both on the blade and the rotor at the

position shown in Fig. 1. The results are plotted in Figures 5 and 19 for

these cases. Figure 5 shows the pressure and axial velocity for case 2. In

this case, the amplitude of oscillation for the rotor was 0.1. This

corresponds to a gap height change of 0.96 to 1.16. Approximate periodic

solutions were obtained after five transient cycles. In this case and the next

set of calculations, the radial velocity of the fluid on the rotor was imnposed

by the prescribed motion of the rotor. The amplitude of the oscillatorytrotor

was 0.1. For this location, the pressure variation at the rotor surface was

0.40 of that at the third blade surface and these two pressures had a phase

shift of about 45% Figures 6 - 9 show the coordinates in the three blade gaps

at quarter cycles of the motion of the rotor. Notice that the moving

coordinates occur in the gap regions only; this is to reduce any unnecessary

numerical disturbance in other regions. Figures 10 - 13 show the velocity

vectors in the blade gaps at different quarter cycles of the movement of the

rotor. Figure 14 shows the axial velocity profiles along the first coordinate

line in the first blade gap at different quarter cycles of the movement of the

rotor. Small recirculating vortices were found at the first stator blade

surface in all situations. The entire flow remained subsonic except in a small

region near the exit of the third stator blade. The Mach number in this region

varied from 1.06 to 1.1, with the largest value occurring when the rotor was at

its first quarter cycle (i.e. , when the gap height is one and is on the way to

a smaller height). This maximum Mach number occurred at an axial distance of

666. Figures 15 - 18 show the pressure contours in the blade gaps at different

quarter cycles of the movement of the rotor. The time dependent nature of the

flow field is clearly evident in these figures. In particular, Figures 15 and

17 show the same instantaneous gap height with the gap increasing in Figure 17

and decreasing in Figure 15. The pressure contours for these times show

significant variation.

In the last case (case 3), the amplitude of oscillatory rotor was chosen

to be 0.2. This corresponds to a change of gap height from 0.86 to 1.26. The

pressure and axial velocity variation at the starred location is shown in

Figure 19. Figures 20 - 23 show the velocity vectors in the blade gaps at

-13-



different quarter cycles of the sovement of the rotor. Figure 24 shove the

axial velocity profiles along the first coordinate line in the first blade gap

at different quarter cycles of the movement of the rotor. Small recirculating

vortexes were found at the first stator blade surface in the third and fourth

quarter cycles only. The Mach number varies from 1.10 to 1.13, with the

largest value at the third quarter cycle (when the gap height is one and is on

the way to larger gap height). This maximum Mach number occurred at an axial

distance of 676. Figures 25 - 28 show the pressure contours in the blade gaps

at different quarter cycles of the movement of the rotor.

In summary, of the calculations discussed, the first vas for a steady

state solution. This was also used as an initial condition for the subsequent

time-dependent runs. The numerical technique utilized in this first case was

to obtain a steady state solution in the most computationally efficient mnner

without regard for transient accuracy. This was accomplished by a matrix

preconditioning technique [131 which can be viewed as taking a fictitious

variable time step through the spatial field. For cases 2 and 3, which

involved time-dependent solutions, the physical time steps were used to

maintain transient accuracy. A constant time step of 0.005 was chosen for

these cases. The periodic solution obtained indicates this time step choice to

be a viable one.

The converged solution for the first case was obtained in 300 iterations.

The pressure was lowered to the ambient value equal to 50 percent of the

stagnation value over 25 time steps, and then the case was run to the steady

state solution. For cases 2 and 3, with a oscillating land of unit frequency,

200 time steps were required to complete one oscillatory cycle. The CPU time

for each time step was 2.25 seconds with 75x150 grid points. A fully

vectorized version of MINT code was used for the present calculations.

Task III:

The objective of the present Phase I effort was to perform a preliminary i
assessment of the capability of a Navier-Stokes code to simulate flow physics

of a seal with varying gap and to assess the practicality of such a procedure.

Considering the latter item first, a periodic solution was obtained in 1125

seconds of CRAY-XMP CPU time. This run time is within range to allow

simulations of large numbers of selected cases. Further, since no study of

maximum allowable time step has been made, it is possible that the allowable

time step could be increased considerably, thus shortening required run time.

-14-



In regard to the results, periodic solutions were clearly obtained. This

is most dramatically shown by comparison of pressure distributions for the same

gap height at times 180 ° apart in the cycle (Figures 15 and 17). In regard to

an approximate assessment of the results, it is possible to consider the

present two-dimensional calculation as simulating some features of the actual

three-dimensional case. This can be done by considering the instantaneous

solution at any time to correspond to the solution for the three-dimensional

problem at the azimuthal location having the same gap height. The net force

acting on the rotor can then be calculated from the pressure at the rotor in

one cycle of oscillation.

The net forces acting on the rotor are calculated for each case (2 and 3).

In case 2, the calculated net force (average dynamic centering force) is 3.2 N

and is acting at an angle of 141.50 (see Figure 29). By assuming an average

radius of whirl orbit of 0.16 inches, the radial stiffness, Ksb-F/r, is 12.6

KN/m. The radial stiffness in a similar situation [141 is obtained

experimentally in the range of 0 to 25 KN/m over a range of frequencies and

pressure gradients. Our two-dimensional approximetion to a whirling rotor case

thus provides a qualitatively satisfactory result.

6. Conclusions

Under the present effort, a transient capability has been developed which

enables a designer to calculate the flow in a labyrinth seal configuration

with an eccentric whirling rotor. This has been done by solving the transient

Navier-Stokes equations in a coordinate system which reflects the seal gap

variation as a function of time. This new capability has been incorporated

within a very general two- and three-dimensional Navier-Stokes procedure which

has been applied previously to a wide variety of turbomachinery flow problems.

Typical examples have been seals with and without swirl, disk pumping cavities,

cascades, etc. Although the analyses have been confined to equations written

in an inertial frame, extension to a rotating frame is straighforward.

Therefore, the basic code can now effectively simulate a large number of

relevent flow fields.

In regard to the work considered specifically under this effort,

calculations were made in an axisymmetric simulatlin for a sinusoidally varying

gap height at two frequencies. Periodic flow was obtained in both cases with

-15-



five cycles of motion. The computed flow fields were examined and the results

appeared physically realistic. Obviously, a detailed comparison with

experiment for three-dimensional configurations of interest is required before

a quantitative assessment can be made. The basic procedure has been applied to

a variety of three-dimensional problems and application to a seal problem which

has time-dependent gap height and is not axisymmetric, i.e., fully three-

dimensional, should be relatively straightforward.

The present SRA Navier-Stokes code represents a state-of-the-art procedure

in simulating highly resolved complex flow fields. The procedure is based upon

an efficient ADI approach which allows high near wall resolution and

significant grid stretching; both of these properties are required to"cothpute

the complex flow present in turbomachinery. The code itself is highly

vectorized, leading to very short run times per grid point per time step. For

steady state solutions, the code contains matrix reconditioning techniques

which lead to very rapid convergence. Typically, convergence is obtained

within 100 to 300 time steps for flows having near wall resolution and a large

number of grid points. These properties make the code very suitable for

application to complex turbomachinery flow problems.

'S
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Figure 29. Net force acting on the rotor.

"U.S.Oovernment Printing Office: 1987 148-0O61/61089 -46-



up. A 40.I %0

% % % % %~


